Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49346-49361, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37826912

RESUMO

"Core/shell" nanocomposites based on magnetic magnetite (Fe3O4) and redox-active cerium dioxide (CeO2) nanoparticles (NPs) are promising in the field of biomedical interests because they can combine the ability of magnetic NPs to heat up in an alternating magnetic field (AMF) with the pronounced antioxidant activity of CeO2 NPs. Thus, this report is devoted to Fe3O4/CeO2 nanocomposites (NCPs) synthesized by precipitation of the computed amount of "CeO2-shell" on the surface of prefabricated Fe3O4 NPs. The X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy data validated the formation of Fe3O4/CeO2 "core/shell"-like NCPs, in which ultrafine CeO2 NPs with an average size of approximately 3-3.5 nm neatly surround Fe3O4 NPs. The presence of a CeO2 "shell" significantly increased the stability of Fe3O4/CeO2 NCPs in aqueous suspensions: Fe3O4/CeO2 NCPs with "shell thicknesses" of 5 and 7 nm formed highly stable magnetic fluids with ζ-potential values of >+30 mV. The magnetization values of Fe3O4/CeO2 NCPs decreased with a growing CeO2 "shell" around the magnetic NPs; however, the resulting composites retained the ability to heat efficiently in an AMF. The presence of a CeO2 "shell" generates a possibility to precisely regulate tuning of the maximum heating temperature of magnetic NCPs in the 42-50 °C range and stabilize it after a certain time of exposure to an AMF by changing the thickness of the "CeO2-shell". A great improvement was observed in both antioxidant and antiamyloidogenic activities. It was found that inhibition of insulin amyloid formation, expressed in IC50 concentration, using NCPs with a "shell thickness" of 7 nm was approximately 10 times lower compared to that of pure CeO2. For these NCPs, more than 2 times higher superoxide dismutase-like activity was observed. The coupling of both Fe3O4 and CeO2 results in higher bioactivity than either of them individually, probably due to a synergistic catalytic mechanism.


Assuntos
Antioxidantes , Nanocompostos , Antioxidantes/farmacologia , Nanocompostos/química , Óxido Ferroso-Férrico/química , Magnetismo , Fenômenos Magnéticos
2.
Int J Biol Macromol ; 251: 126331, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579899

RESUMO

One of the most attractive approaches in biomedicine and pharmacy is the application of multifunctional materials. The mesoporous structure of clinoptilolite (CZ) absorbs various types of substances and can be used as a model for studying the carriers for targeted drug delivery with controlled release. CZ-dye composites are fabricated by incorporation into clinoptilolite pores commonly used dyes, aluminum phthalocyanine, zinc porphine, and hypericin. We examined and compared the effect of pure dyes and CZ-dye composites on insulin amyloidogenesis. The formation of insulin amyloid fibrils and the disassembly of preformed fibrils is significantly affected by any of the three compounds, however, the strongest effect is observed for aluminum phthalocyanine indicating a structurally-dependent anti-amyloidogenic activity of the dyes. The incorporation of dyes into CZ particles resulted in enhanced anti-amyloidogenic activity in comparison to pure CZ particles. The cell metabolic activity, biocompatibility and fluorescence biodistribution of the dyes entrapped in the composites were tested in vitro (U87 MG cells) and in vivo in the quail chorioallantoic membrane model. Considering the photoactive properties of the dyes used, we assume their applicability in photodiagnostics and photodynamic therapy. It can also be expected that their anti-amyloidogenic potential can be enhanced by photodynamic effect.

3.
Colloids Surf B Biointerfaces ; 227: 113356, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201447

RESUMO

Cerium dioxide nanoparticles (CeO2 NPs) are used increasingly in nanotechnology and particularly in biotechnology and bioresearch. Thus, CeO2 NPs have been successfully tested in vitro as a potential therapeutic agent for various pathologies associated with oxidative stress, including the formation of protein amyloid aggregates. In this study, to increase the anti-amyloidogenic efficiency and preserve the antioxidant potential, the surface of the synthesized CeO2 NPs is modified with a nonionic, sugar-based surfactant, dodecyl maltoside (DDM), which is known for its high anti-amyloidogenic activity and biocompatibility. Dynamic light scattering and Fourier transform infrared spectroscopy demonstrated successful modification by DDM. The apparent hydrodynamic diameters of CeO2 NPs and DDM-modified NPs (CeO2@DDM NPs) are found to be ⁓180 nm and ⁓260 nm, respectively. A positive zeta potential value of + 30.5 mV for CeO2 NPs and + 22.5 mV for CeO2 @DDM NPs suggest sufficient stability and good dispersion of NPs in an aqueous solution. A combination of Thioflavin T fluorescence analysis and atomic force microscopy is used to assess the effect of nanoparticles on the formation of insulin amyloid fibrils. Results show that the fibrillization of insulin is inhibited by both, naked and modified NPs in a dose-dependent manner. However, while the IC50 of naked NPs is found to be ∼270 ± 13 µg/mL, the surface-modified NPs are 50% more efficient with IC50 equaled to 135 ± 7 µg/mL. In addition, both, the naked CeO2 NPs and DDM-modified NPs displayed an antioxidant activity expressed as oxidase-, catalase- and SOD-like activity. Therefore, the resulting nanosized material is very well suited to prove or disprove the hypothesis that oxidative stress plays a role in the formation of amyloid fibrils.


Assuntos
Cério , Insulinas , Nanopartículas , Amiloide , Nanopartículas/química , Cério/farmacologia , Cério/química , Proteínas Amiloidogênicas
4.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838799

RESUMO

The structure and interaction parameters of the water-soluble cholesterol-based surfactant, Chobimalt, are investigated by small-angle neutron and X-ray scattering techniques. The obtained data are analyzed by a model-independent approach applying the inverse Fourier transformation procedure as well as considering a model fitting procedure, using a core-shell form factor and hard-sphere structure factor. The analysis reveals the formation of the polydisperse spherical or moderately elongated ellipsoidal shapes of the Chobimalt micelles with the hard sphere interaction in the studied concentration range 0.17-6.88 mM. The aggregation numbers are estimated from the micelle geometry observed by small-angle scattering and are found to be in the range of 200-300. The low pH of the solution does not have a noticeable effect on the structure of the Chobimalt micelles. The critical micelle concentrations of the synthetic surfactant Chobimalt in water and in H2O-HCl solutions were obtained according to fluorescence measurements as ~3 µM and ~2.5 µM, respectively. In-depth knowledge of the basic structural properties of the detergent micelles is necessary for further applications in bioscience and biotechnology.


Assuntos
Detergentes , Micelas , Detergentes/química , Tensoativos/química , Água/química , Colesterol , Soluções
5.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430405

RESUMO

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.


Assuntos
Amiloide , Muramidase , Amiloide/metabolismo , Muramidase/química , Ferritinas , Ferro/metabolismo
6.
Colloids Surf B Biointerfaces ; 220: 112960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308885

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) are well known for their application in various fields of industry, as well as in biology and medicine. Knowledge of synthesis schemes, physicochemical and morphological features of nanoscale CeO2 is important for assessing their antioxidant behavior and understanding the mechanism of oxidative stress and its consequences. The choice of the method of synthesis should be based on the possibility to choose the conditions and parameters for obtaining CeO2 with controlled dimensions and a ratio of Се3+/Се4+ on their surface. In this study, CeO2 NPs are synthesized by precipitation in mixed water-alcohol solutions at constant pH = 9. The properties of obtained NPs are studied using various methods of physical-chemical characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. The size of CeO2 NPs varied from 14 to 4.2 nm with increasing alcohol concentration, while the effect of constant pH during synthesis on the morphology of the particles was insignificant. The synthesized nanoparticles form highly stable aqueous suspensions since their zeta-potential is higher than + 40 mV. It is found that the ability of CeO2 NPs to self-stabilize is associated with the presence of hydrated Ce4+ ions on their surface. In vitro biological studies have shown that, regardless of particle size, CeO2 NPs have antioxidant potential, but smaller NPs with a higher percentage of Ce3+ on the surface had a more effective antioxidant effect. In addition, the size-depended activity of CeO2 NPs to inhibit the amyloid formation of insulin is demonstrated.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Antioxidantes/farmacologia , Cério/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química
7.
Front Mol Biosci ; 9: 955282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060240

RESUMO

The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.

8.
Biomedicines ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625679

RESUMO

Oxidative stress is known to be associated with a number of degenerative diseases. A better knowledge of the interplay between oxidative stress and amyloidogenesis is crucial for the understanding of both, aging and age-related neurodegenerative diseases. Cerium dioxide nanoparticles (CeO2 NPs, nanoceria) due to their remarkable properties are perspective nanomaterials in the study of the processes accompanying oxidative-stress-related diseases, including amyloid-related pathologies. In the present work, we analyze the effects of CeO2 NPs of different sizes and Ce4+/Ce3+ ratios on the fibrillogenesis of insulin, SOD-like enzymatic activity, oxidative stress, biocompatibility, and cell metabolic activity. CeO2 NPs (marked as Ce1-Ce5) with controlled physical-chemical parameters, such as different sizes and various Ce4+/Ce3+ ratios, are synthesized by precipitation in water-alcohol solutions. All synthesized NPs are monodispersed and exhibit good stability in aqueous suspensions. ThT and ANS fluorescence assays and AFM are applied to monitor the insulin amyloid aggregation and antiamyloid aggregation activity of CeO2 NPs. The analyzed Ce1-Ce5 nanoparticles strongly inhibit the formation of insulin amyloid aggregates in vitro. The bioactivity is analyzed using SOD and MTT assays, Western blot, fluorescence microscopy, and flow cytometry. The antioxidative effects and bioactivity of nanoparticles are size- or valence-dependent. CeO2 NPs show great potential benefits for studying the interplay between oxidative stress and amyloid-related diseases, and can be used for verification of the role of oxidative stress in amyloid-related diseases.

9.
Anal Methods ; 13(36): 4174-4178, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34523621

RESUMO

Monitoring the aggregation of amyloid-prone proteins is critical for understanding the mechanism of amyloid fibril formation. Insulin, when dissolved in low pH buffer, has a surface tension of 61-64 mN m-1, as measured by the pendant drop technique. Formation of insulin amyloid fibrils resulted in the increase of the surface tension values up to 71.2-73.5 mN m-1. The kinetics of fibril formation and fibril morphology were validated by ThT fluorescence and AFM, respectively. The results demonstrate that monitoring the surface tension by the pendant drop technique is a valuable tool for the detection of insulin amyloid aggregation.


Assuntos
Amiloide , Insulina , Insulina Regular Humana , Cinética , Tensão Superficial
10.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853053

RESUMO

A set of cerium dioxide nanoparticles (CeO2NPs) was synthesized by precipitation in water-alcohol solutions under conditions when the physical-chemical parameters of synthesized NPs were controlled by changing the ratio of the reaction components. The size of CeO2NPs is controlled largely by the dielectric constant of the reaction solution. An increase of the percentage of Ce3+ions at the surface was observed with a concomitant reduction of the NP sizes. All synthesized CeO2NPs possess relatively high positive values of zeta-potential (ζ > 40 mV) suggesting good stability in aqueous suspensions. Analysis of the valence- and size-dependent rate of hydrogen peroxide decomposition revealed that catalase/peroxidase-like activity of CeO2NPs is higher at a low percentage of Ce3+at the NP surface. In contrast, smaller CeO2NPs with a higher percentage of Ce3+at the NP surface display a higher oxidase-like activity.

11.
Sci Rep ; 11(1): 5528, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750868

RESUMO

Magnetic nano/micro-particles based on clinoptilolite-type of natural zeolite (CZ) were fabricated and were expected to act as carriers for controlled drug delivery/release, imaging and local heating in biological systems. Adsorption of rhodamine B, sulfonated aluminum phthalocyanine and hypericin by magnetic CZ nano/micro-particles was investigated, as was the release of hypericin. Using an alternating magnetic field, local temperature increase by 10 °C in animal tissue with injected magnetic CZ particles was demonstrated. In addition, the CZ-based particles have been found to exhibit an anti-amyloidogenic effect on the amyloid aggregation of insulin and lysozyme in a dose- and temperature-dependent manner. Therefore, the mesoporous structure of CZ particles provided a unique platform for preparation of multifunctional magnetic and optical probes suitable for optical imaging, MRI, thermo- and phototherapy and as effective containers for controlled drug delivery. We concluded that magnetic CZ nano/micro-particles could be evaluated for further application in cancer hyperthermia therapy and as anti-amyloidogenic agents.


Assuntos
Hipertermia Induzida , Nanocompostos/química , Zeolitas/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química
12.
Colloids Surf B Biointerfaces ; 197: 111428, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33129101

RESUMO

Amphiphilic compounds, both detergents and lipids, are important tools for in vitro analysis of water-soluble and integral membrane proteins. A key question is whether these two groups of amphiphilic molecules use the same pathway to affect structural and functional integrity of proteins. In the present study, we tested the effect of non-ionic detergent dodecyl maltoside (DDM), two phospholipids, 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC), 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), and the detergent-phospholipid mixtures on insulin amyloidogenesis in vitro. Amyloidogenesis of insulin is significantly affected by DDM in a time-and dose-dependent manner, but only slightly affected by either of phospholipids. Addition of DHPC or DMPC to detergent does not alter the inhibiting pattern, suggesting that DDM preferably binds to insulin. The molecular modeling revealed that DDM and the phospholipids occupy equivalent binding sites. DDM, due to the presence of maltose with several oxygen atoms (hydroxylic, glycosidic and ring) is involved in more hydrogen bonds than DHPC or DMPC. Hydrophobic interactions are important factors to stabilize both, DDM and phospholipids in their binding sites. Our results indicate that certain detergents (applying DDM as an example) and selected phospholipids are not always interchangeable in their use to investigate the effect of amphiphilic compounds on the behavior of amyloid-prone proteins.


Assuntos
Detergentes , Fosfolipídeos , Amiloide , Proteínas Amiloidogênicas , Dimiristoilfosfatidilcolina , Insulina
13.
ACS Appl Mater Interfaces ; 12(29): 32410-32419, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32598133

RESUMO

Nowadays, determining the disassembly mechanism of amyloids under nanomaterials action is a crucial issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. In this study, the antiamyloid disassembly activity of fullerenes C60 and C70 dispersed in 1-methyl-2-pyrrolidinone (NMP) toward amyloid fibrils preformed from lysozyme and insulin was investigated using a combination of different experimental techniques. Thioflavin T fluorescence assay and atomic force microscopy were applied for monitoring of disaggregation activity of fullerenes. It was demonstrated that both types of fullerene-based complexes are very effective in disassembling preformed fibrils, and characterized by the low apparent half-maximal disaggregation concentration (DC50) in the range of ∼22-30 µg mL-1. Small-angle neutron scattering was employed to monitor the different stages of the disassembly process with respect to the size and morphology of the aggregates. Based on the obtained results, a possible disassembly mechanism for amyloid fibrils interacting with fullerene/NMP complexes was proposed. The study is a principal step in understanding of the fullerenes destruction mechanism of the protein amyloids, as well as providing valuable information on how macromolecules can be engineered to disassemble unwanted amyloid aggregates by different mechanisms.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Fulerenos/farmacologia , Nanoestruturas/química , Peptídeos beta-Amiloides/metabolismo , Animais , Galinhas , Fulerenos/química , Humanos , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Propriedades de Superfície
14.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 259-274, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30316862

RESUMO

Natural polyphenols, curcumin, rottlerin and EGCG were selected for initial computational modeling of protein-ligand interaction patterns. The docking calculations demonstrated that these polyphenols can easily adjust their conformational shape to fit well into the binding sites of amyloidogenic proteins. The experimental part of the study focused on the effect of rottlerin on fibrillation of three distinct amyloidogenic proteins, namely insulin, lysozyme and Aß1-40 peptide. Different experimental protocols such as fluorescence spectroscopy, circular dichroism and atomic force microscopy, demonstrated that amyloid fibril formation of any of the three proteins is inhibited by low micromolar rottlerin concentrations. Most likely, the inhibition of amyloid formation proceeded via interaction of rottlerin with amyloidogenic regions of the studied proteins. Moreover, rottlerin was also effective in pre-formed fibrils disassembly, suggesting that interactions of rottlerin with fibrils were capable to interrupt the fibril-stabilizing bonds of ß-sheets. The apparent IC50 and DC50 values were calculated in the range of 1.3-36.4 µM and 15.6-25.8 µM, respectively. The strongest inhibiting/disassembling effect of rottlerin was observed on Aß1-40 peptide. The cytotoxicity assay performed on the Neuro 2a cells indicated time-dependent cell morphology changes but rottlerin affected the cell viability only at concentration above 50 µM. The results of this study suggest that chemical modifications on rottlerin could be tested in the future as a promising strategy for the modulation of amyloidogenic proteins aggregation.


Assuntos
Acetofenonas/química , Peptídeos beta-Amiloides/química , Benzopiranos/química , Fragmentos de Peptídeos/química , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Catequina/análogos & derivados , Catequina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Insulina/química , Camundongos , Modelos Moleculares , Muramidase/química
15.
Colloids Surf B Biointerfaces ; 173: 709-718, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384267

RESUMO

Atomic force microscopy, Thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy, differential scanning calorimetry, and molecular modeling techniques have been employed to investigate the amyloid aggregation of insulin in the presence of non-ionic detergent, Triton X-100 (TX-100). In contrast to recently described inhibition of lysozyme amyloid formation by non-ionic detergents (Siposova, 2017), the amyloid aggregation of insulin in the presence of sub-micellar TX-100 concentration exhibits two dissimilar phases. The first, inhibition phase, is observed at the protein to detergent molar ratio of 1:0.1 to 1:1. During this phase, the insulin amyloid fibril formation is inhibited by TX-100 up to ∼60%. The second, "morphological" phase, is observed at increasing detergent concentration, corresponding to protein:detergent molar ratio of ∼1:1 - 1:10. Under these conditions a significant increase of the steady-state ThT fluorescence intensities and a dramatically changed morphology of the insulin fibrils were observed. Increasing of the detergent concentration above the CMC led to complete inhibition of amyloidogenesis. Analysis of the experimental and molecular modeling results suggests an existence of up to six TX-100 binding sites within dimer of insulin with different binding energy. The physiological relevance of the results is discussed.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Insulina/química , Octoxinol/química , Agregados Proteicos , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/metabolismo , Benzotiazóis/química , Sítios de Ligação , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Cinética , Microscopia de Força Atômica , Simulação de Acoplamento Molecular , Octoxinol/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica
16.
ACS Appl Bio Mater ; 2(5): 1884-1896, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35030678

RESUMO

There seems to be general agreement that oxidative stress is involved in many pathological conditions including Parkinson's, Alzheimer's, and other neurodegenerative diseases, and overall aging. Cerium oxide nanoparticles, also known as nanoceria (CeO2-NPs), have shown promise as catalytic antioxidants, based on their ability to switch between Ce3+ and Ce4+ valence states. In the present work we have synthesized and characterized CeO2-NPs, examined the effect of CeO2-NPs on amyloidogenesis of insulin, and analyzed the impact of CeO2-NPs on oxidative stress and biocompatibility in vitro in three types of invasive cancer cells, and in vivo in the preclinical model of the chorioallantoic membrane (CAM) of quail embryos. The different experimental techniques revealed a high stability and homogeneity of the "naked" CeO2-NPs synthesized by precipitation from a reversal microemulsion. The CeO2-NPs were 5-6 nm in diameter (TEM) and monodispersed and have a ζ +46.9 mV ζ potential in Milli-Q water. We demonstrated for the first time that CeO2-NPs affect insulin fibrillation in a dose-dependent manner. The inhibiting, IC50, and disassembling, DC50, concentrations were calculated to be ∼100 ± 3.5 and ∼200 ± 5.5 µg/mL, respectively. Furthermore, CeO2-NPs demonstrated reliable biocompatibility and sufficient uptake by glioma and breast cancer cells. The presence of a high concentration of CeO2-NPs within the cells resulted only in local changes in metabolic activity and generation of oxidative stress at a low level. Moreover, high biocompatibility with CeO2-NPs was shown in vivo in the CAM.

17.
J Biol Phys ; 44(3): 237-243, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29740739

RESUMO

The interaction of amyloid ß-peptide (Aß) with the iron-storage protein ferritin was studied in vitro. We have shown that Aß during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aß-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aß can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Ferritinas/metabolismo , Ferro/metabolismo , Peptídeos beta-Amiloides/química , Ferritinas/química , Humanos , Oxirredução
18.
Colloids Surf B Biointerfaces ; 150: 445-455, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842932

RESUMO

Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-ß-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22µM and 26µM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.


Assuntos
Amiloide/química , Detergentes/química , Muramidase/química , Animais , Benzotiazóis , Sítios de Ligação , Galinhas , Dicroísmo Circular , Relação Dose-Resposta a Droga , Clara de Ovo/química , Glucosídeos/química , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Luz , Micelas , Microscopia de Força Atômica , Modelos Moleculares , Octoxinol/química , Conformação Proteica , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Propriedades de Superfície , Temperatura , Tiazóis/química
19.
Chem Biol Drug Des ; 89(3): 411-419, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27569739

RESUMO

Curcumin and its derivatives have attracted great interest in the prevention and treatment of Alzheimer's disease, thanks both to the ability to hinder the formation of amyloid-beta (Aß) aggregates and the ability to bind Cu (II) ion. In this article, we explore the ability of curcumin derivatives of K2T series to affect amyloid Aß1-40 aggregation. These derivatives were obtained by introducing the t-butyl ester group through a methylenic spacer on the central carbon atom of the ß-diketo moiety of curcumin frame. The studied curcuminoids were demonstrated to inhibit Aß1-40 fibrillization at substoichiometric concentrations with IC50 value near that of curcumin. In addition, the antioxidant properties and DNA interaction of their Cu(II) complexes is evaluated. The structure of Cu(II)-K2T31 complex is also proposed on the basis of DFT calculation.


Assuntos
Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Curcumina/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Complexos de Coordenação/química , Cobre/farmacologia , Curcumina/química , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Concentração Inibidora 50 , Microscopia de Força Atômica , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 607-619, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27865910

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and currently there is no efficient treatment. The classic drug-design strategy based on the "one-molecule-one-target" paradigm was found to be ineffective in the case of multifactorial diseases like AD. A novel multi-target-directed ligand strategy based on the assumption that a single compound consisting of two or more distinct pharmacophores is able to hit multiple targets has been proposed as promising. Herein, we investigated 7-methoxytacrine - memantine heterodimers developed with respect to the multi-target-directed ligand theory. The spectroscopic, microscopic and cell culture methods were used for systematic investigation of the interference of the heterodimers with ß-secretase (BACE1) activity, Aß peptide amyloid fibrillization (amyloid theory) and interaction with M1 subtype of muscarinic (mAChRs), nicotinic (nAChRs) acetylcholine receptors (cholinergic theory) and N-methyl-d-aspartate receptors (NMDA) (glutamatergic theory). The drug-like properties of selected compounds have been evaluated from the point of view of blood-brain barrier penetration and cell proliferation. We have confirmed the multipotent effect of novel series of compounds. They inhibited effectively Aß peptide amyloid fibrillization and affected the BACE1 activity. Moreover, they have AChE inhibitory potency but they could not potentiate cholinergic transmission via direct interaction with cholinergic receptors. All compounds were reported to act as an antagonist of both M1 muscarinic and muscle-type nicotinic receptors. We have found that 7-methoxytacrine - memantine heterodimers are able to hit multiple targets associated with Alzheimer's disease and thus, have a potential clinical impact for slowing or blocking the neurodegenerative process related to this disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amantadina/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tacrina/análogos & derivados , Doença de Alzheimer/metabolismo , Amantadina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Células CHO , Colinesterases/metabolismo , Cricetulus , Dimerização , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Terapia de Alvo Molecular , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/química , Tacrina/farmacologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...